The main wing assemblies are of a delta wing design featuring extensive sweep along the leading edge and little to no sweep along the straight trailing edge. Construction includes carbon-fiber composite rib and spars with metal only used along the weapon hardpoints. Up to 70% of the Typhoon's construction revolves around use of carbon-fiber composites, titanium and aluminum-lithium. Control surfaces are fitted to both the leading and trailing edges. Control is aided by trailing edge flaperons which accomplish the combined tasks of conventional flaps, elevators and ailerons and are further aided by the canard foreplanes. An airbrake is fitted to the ventral side while leading-edge flaps help in landing. The delta wing design approach also allows for multiple external underwing and underfuselage hardpoints and number thirteen in the Typhoon. Jammer pods are ingeniously contained at the clipped wingtips so no ordnance is used at those areas. The Typhoon makes use of basic stealth design features including implementation of a small radar cross section. Some areas of the aircraft are coated over in special materials to absorb incoming radar waves. The radar system itself diffuses its own signals to an extent.
Intakes are mounted directly beneath the fuselage and are split at their center, allowing each duct to aspirate their respective engine and further break up incoming radar signals from reaching the engine. Each intake opening is rectangular in shape and slightly angled down towards the fuselage centerline. The intake sports a hinged lower "lip" and the center splitter plate ensures proper, uninterrupted airflow to each engine. Its low fuselage placement is also deemed optimal for this particular aircraft design layout. The empennage is dominated by a single, large-area vertical tail fin (similar to the one as found on the Panavia Tornado but of a smaller overall size) mounted between the two engine compartments. The engines exhaust through conventional nozzle rings at the rear and base of the vertical tail fin though there has always been talk of replacing these with vectoring nozzles in the future. There is a small noticeable intake at the trailing edge base of the fin. As a delta wing design, the Typhoon makes no use of traditional horizontal tail planes and instead uses the canard foreplanes and wing-mounted surfaces for basic flight functions (aided by computers).
Her undercarriage is conventional, sporting two single-wheeled main landing gear legs and a single-wheeled nose landing gear leg. The main legs retract inwards towards centerline under each wingroot while the nose leg retracts backwards under the split intake system. Each leg is fitted with carbon-carbon brakes that are cooled by a fan system and furthermore controlled by an automated computer function. The undercarriage as a whole is designed to withstand a good deal of stress, allowing them to stay exposed at constant Angle-of-Attack (AOA) during landings. This affords the Typhoon a relatively short landing run of just 2,300 feet.